PROVA PENETROMETRICA DINAMICA

Committente: Pepe Salvatore
Cantiere:
Località: Via P. Togliatti - comune di Castel S.
Giorgio (SA)

Caratteristiche Tecniche-Strumentali Sonda: DPSH TG 63-200 PAGANI

Rif. Norme DII	N 4094
Peso Massa battente	63,5 Kg
Altezza di caduta libera	0,75 m
Peso sistema di battuta	0,63 Kg
Diametro punta conica	51,00 mm
Area di base punta	20,43 cm ²
Lunghezza delle aste	1 m
Peso aste a metro	6,31 Kg/m
Profondità giunzione prima asta	a 0,40 m
Avanzamento punta	0,20 m
Numero colpi per punta	N(20)
Rivestimento/fanghi	No
Angolo di apertura punta	90 °

PROVE PENETROMETRICHE DINAMICHE CONTINUE (DYNAMIC PROBING)

DPSH – DPM (... scpt ecc.)

Note illustrative - Diverse tipologie di penetrometri dinamici

La prova penetrometrica dinamica consiste nell'infiggere nel terreno una punta conica (per tratti consecutivi δ) misurando il numero di colpi N necessari.

Le Prove Penetrometriche Dinamiche sono molto diffuse ed utilizzate nel territorio da geologi e geotecnici, data la loro semplicità esecutiva, economicità e rapidità di esecuzione.

La loro elaborazione, interpretazione e visualizzazione grafica consente di "catalogare e parametrizzare" il suolo attraversato con un'immagine in continuo, che permette anche di avere un raffronto sulle consistenze dei vari livelli attraversati e una correlazione diretta con sondaggi geognostici per la caratterizzazione stratigrafica.

La sonda penetrometrica permette inoltre di riconoscere abbastanza precisamente lo spessore delle coltri sul substrato, la quota di eventuali falde e superfici di rottura sui pendii, e la consistenza in generale del terreno.

L'utilizzo dei dati, ricavati da correlazioni indirette e facendo riferimento a vari autori, dovrà comunque essere trattato con le opportune cautele e, possibilmente, dopo esperienze geologiche acquisite in zona.

Elementi caratteristici del penetrometro dinamico sono i seguenti:

- peso massa battente M
- altezza libera caduta H
- punta conica: diametro base cono D, area base A (angolo di apertura α)
- avanzamento (penetrazione) δ
- presenza o meno del rivestimento esterno (fanghi bentonitici).

Con riferimento alla classificazione ISSMFE (1988) dei diversi tipi di penetrometri dinamici (vedi tabella sotto riportata) si rileva una prima suddivisione in quattro classi (in base al peso M della massa battente):

- tipo LEGGERO (DPL)
- tipo MEDIO (DPM)
- tipo PESANTE (DPH)
- tipo SUPERPESANTE (DPSH)

Classificazione ISSMFE dei penetrometri dinamici:

Tipo	Sigla di riferimento	peso della massa	prof.max indagine battente
		M (kg)	(m)
Leggero	DPL (Light)	M ≤10	8
Medio	DPM (Medium)	10 <m <40<="" td=""><td>20-25</td></m>	20-25
Pesante	DPH (Heavy)	40≤M <60	25
Super pesante (Super Heavy)	DPSH	M≥60	25

penetrometri in uso in Italia

In Italia risultano attualmente in uso i seguenti tipi di penetrometri dinamici (non rientranti però nello Standard ISSMFE):

- DINAMICO LEGGERO ITALIANO (DL-30) (MEDIO secondo la classifica ISSMFE) massa battente M = 30 kg, altezza di caduta H = 0.20 m, avanzamento δ = 10 cm, punta conica $(\alpha=60-90^{\circ})$, diametro D 35.7 mm, area base cono A=10 cm² rivestimento / fango bentonitico : talora previsto;

- DINAMICO LEGGERO ITALIANO (DL-20) (MEDIO secondo la classifica ISSMFE) massa battente M = 20 kg, altezza di caduta H=0.20 m, avanzamento δ = 10 cm, punta conica (α = 60-90°), diametro D 35.7 mm, area base cono A=10 cm² rivestimento / fango bentonitico : talora previsto;
- DINAMICO PESANTE ITALIANO (SUPERPESANTE secondo la classifica ISSMFE) massa battente M = 73 kg, altezza di caduta H = 0.75 m, avanzamento $\delta = 30$ cm, punta conica ($\alpha = 60^{\circ}$), diametro D = 50.8 mm, area base cono A = 20.27 cm² rivestimento: previsto secondo precise indicazioni;
- DINAMICO SUPERPESANTE (Tipo EMILIA) massa battente M=63.5 kg, altezza caduta H=0.75 m, avanzamento δ =20-30 cm, punta conica conica (α = 60°-90°) diametro D = 50.5 mm, area base cono A = 20 cm², rivestimento / fango bentonitico : talora previsto.

Correlazione con Nspt

Poiché la prova penetrometrica standard (SPT) rappresenta, ad oggi, uno dei mezzi più diffusi ed economici per ricavare informazioni dal sottosuolo, la maggior parte delle correlazioni esistenti riguardano i valori del numero di colpi Nspt ottenuto con la suddetta prova, pertanto si presenta la necessità di rapportare il numero di colpi di una prova dinamica con Nspt. Il passaggio viene dato da:

$$Nspt = \beta_t N$$

Dove:

$$\beta_t = \frac{Q}{Q_{SPT}}$$

in cui Q è l'energia specifica per colpo e Qspt è quella riferita alla prova SPT.

L'energia specifica per colpo viene calcolata come segue:

$$Q = \frac{M^2 \cdot H}{A \cdot \delta \cdot (M + M')}$$

in cui

M = peso massa battente;

M' = peso aste;

H = altezza di caduta;

A = area base punta conica;

 δ = passo di avanzamento.

Valutazione resistenza dinamica alla punta Rpd

Formula Olandesi

$$Rpd = \frac{M^2 \cdot H}{\left[A \cdot e \cdot (M+P)\right]} = \frac{M^2 \cdot H \cdot N}{\left[A \cdot \delta \cdot (M+P)\right]}$$

Rpd = resistenza dinamica punta (area A);

= infissione media per colpo (δ/ N);

M = peso massa battente (altezza caduta H);

P = peso totale aste e sistema battuta.

Calcolo di (N₁)60

(N₁)₆₀ è il numero di colpi normalizzato definito come segue:

 $(N_1)_{60} = C_N \times N_{60} \text{ con } C_N = \sqrt{(Pa/\sigma'_{VO})} C_N < 1.7 \text{ Pa} = 101.32 \text{ kPa}$ (Liao e Whitman 1986)

 $N_{60}=N_{SPT}\times(ER/60)\times C_s\times C_r\times C_d$

ER/60:Rendimento del sistema di infissione normalizzato al 60%.

C_S: Parametro funzione della controcamicia (1.2 se assente).

C_d: Funzione del diametro del foro (1 se compreso tra 65-115mm).

C_r: Parametro di correzione funzione della lunghezza delle aste.

Metodologia di Elaborazione.

Le elaborazioni sono state effettuate mediante un programma di calcolo automatico Dynamic Probing della *GeoStru Software*.

Il programma calcola il rapporto delle energie trasmesse (coefficiente di correlazione con SPT) tramite le elaborazioni proposte da Pasqualini 1983 - Meyerhof 1956 - Desai 1968 - Borowczyk-Frankowsky 1981.

Permette inoltre di utilizzare i dati ottenuti dall'effettuazione di prove penetrometriche per estrapolare utili informazioni geotecniche e geologiche.

Una vasta esperienza acquisita, unitamente ad una buona interpretazione e correlazione, permettono spesso di ottenere dati utili alla progettazione e frequentemente dati maggiormente attendibili di tanti dati bibliografici sulle litologie e di dati geotecnici determinati sulle verticali litologiche da poche prove di laboratorio eseguite come rappresentazione generale di una verticale eterogenea disuniforme e/o complessa.

In particolare consente di ottenere informazioni su:

- l'andamento verticale e orizzontale degli intervalli stratigrafici,
- la caratterizzazione litologica delle unità stratigrafiche,
- i parametri geotecnici suggeriti da vari autori in funzione dei valori del numero dei colpi e delle resistenza alla punta.

Valutazioni statistiche e correlazioni

Elaborazione Statistica

Permette l'elaborazione statistica dei dati numerici di Dynamic Probing, utilizzando nel calcolo dei valori rappresentativi dello strato considerato un valore inferiore o maggiore della media aritmetica dello strato (dato comunque maggiormente utilizzato); i valori possibili in immissione sono :

Media

Media aritmetica dei valori del numero di colpi sullo strato considerato.

Media minima

Valore statistico inferiore alla media aritmetica dei valori del numero di colpi sullo strato considerato.

Massimo

Valore massimo dei valori del numero di colpi sullo strato considerato.

Minimo

Valore minimo dei valori del numero di colpi sullo strato considerato.

Scarto quadratico medio

Valore statistico di scarto dei valori del numero di colpi sullo strato considerato.

Media deviata

Valore statistico di media deviata dei valori del numero di colpi sullo strato considerato.

Media + s

Media + scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

Media - s

Media - scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

Distribuzione normale R.C.

Il valore di Nspt,k viene calcolato sulla base di una distribuzione normale o gaussiana, fissata una probabilità di non superamento del 5%, secondo la seguente relazione:

$$Nspt_{,k} = Nspt_{,medio} - 1.645 \cdot (\sigma_{Nspt})$$

dove sNspt è la deviazione standard di Nspt

Distribuzione normale R.N.C.

Il valore di Nspt,k viene calcolato sulla base di una distribuzione normale o gaussiana, fissata una probabilità di non superamento del 5%, trattando i valori medi di Nspt distribuiti normalmente:

$$Nspt_{,k} = Nspt_{,medio} - 1.645 \cdot (\sigma_{Nspt}) / \sqrt{n}$$

dove n è il numero di letture.

Pressione ammissibile

Pressione ammissibile specifica sull'interstrato (con effetto di riduzione energia per svergolamento aste o no) calcolata secondo le note elaborazioni proposte da Herminier, applicando un coefficiente di sicurezza (generalmente = 20-22) che corrisponde ad un coefficiente di sicurezza standard delle fondazioni pari a 4, con una geometria fondale standard di larghezza pari a 1 mt. ed immorsamento d = 1 mt..

Correlazioni geotecniche terreni incoerenti

Liquefazione

Permette di calcolare utilizzando dati Nspt il potenziale di liquefazione dei suoli (prevalentemente sabbiosi).

Attraverso la relazione di *SHI-MING (1982)*, applicabile a terreni sabbiosi, la liquefazione risulta possibile solamente se Nspt dello strato considerato risulta inferiore a Nspt critico calcolato con l'elaborazione di *SHI-MING*.

Correzione Nspt in presenza di falda

Nspt corretto = $15 + 0.5 \times (Nspt - 15)$

Nspt è il valore medio nello strato

La correzione viene applicata in presenza di falda solo se il numero di colpi è maggiore di 15 (la correzione viene eseguita se tutto lo strato è in falda).

Angolo di Attrito

- Peck-Hanson-Thornburn-Meyerhof 1956 Correlazione valida per terreni non molli a prof. < 5 mt.; correlazione valida per sabbie e
 ghiaie rappresenta valori medi. Correlazione storica molto usata, valevole per prof. < 5 mt. per terreni sopra falda e < 8 mt. per terreni in
 falda (tensioni < 8-10 t/mq)
- Meyerhof 1956 Correlazioni valide per terreni argillosi ed argillosi-marnosi fessurati, terreni di riporto sciolti e coltri detritiche (da modifica sperimentale di dati).
- Sowers 1961)- Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. < 4 mt. sopra falda e < 7 mt. per terreni in falda) σ>5 t/mq.
- De Mello Correlazione valida per terreni prevalentemente sabbiosi e sabbioso-ghiaiosi (da modifica sperimentale di dati) con angolo di attrito < 38°.
- Malcev 1964 Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. > 2 m. e per valori di angolo di attrito < 38°).
- Schmertmann 1977- Angolo di attrito (gradi) per vari tipi litologici (valori massimi). N.B. valori spesso troppo ottimistici poiché desunti da correlazioni indirette da Dr %.
- Shioi-Fukuni 1982 (ROAD BRIDGE SPECIFICATION) Angolo di attrito in gradi valido per sabbie sabbie fini o limose e limi siltosi (cond. ottimali per prof. di prova > 8 mt. sopra falda e > 15 mt. per terreni in falda) σ>15 t/mq.
- Shioi-Fukuni 1982 (JAPANESE NATIONALE RAILWAY) Angolo di attrito valido per sabbie medie e grossolane fino a ghiaiose.
- Angolo di attrito in gradi (Owasaki & Iwasaki) valido per sabbie sabbie medie e grossolane-ghiaiose (cond. ottimali per prof. > 8 mt. sopra falda e > 15 mt. per terreni in falda) s>15 t/mq.

- Meyerhof 1965 Correlazione valida per terreni per sabbie con % di limo < 5% a profondità < 5 mt. e con % di limo > 5% a profondità < 3 mt
- Mitchell e Katti (1965) Correlazione valida per sabbie e ghiaie.

Densità relativa (%)

- Gibbs & Holtz (1957) correlazione valida per qualunque pressione efficace, per ghiaie Dr viene sovrastimato, per limi sottostimato.
- Skempton (1986) elaborazione valida per limi e sabbie e sabbie da fini a grossolane NC a qualunque pressione efficace, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.
- Meyerhof (1957).
- Schultze & Menzenbach (1961) per sabbie fini e ghiaiose NC, metodo valido per qualunque valore di pressione efficace in depositi NC, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.

Modulo Di Young (E_V)

- Terzaghi elaborazione valida per sabbia pulita e sabbia con ghiaia senza considerare la pressione efficace.
- Schmertmann (1978), correlazione valida per vari tipi litologici .
- Schultze-Menzenbach, correlazione valida per vari tipi litologici.
- D'Appollonia ed altri (1970), correlazione valida per sabbia, sabbia SC, sabbia NC e ghiaia
- Bowles (1982), correlazione valida per sabbia argillosa, sabbia limosa, limo sabbioso, sabbia media, sabbia e ghiaia.

Modulo Edometrico

- Begemann (1974) elaborazione desunta da esperienze in Grecia, correlazione valida per limo con sabbia, sabbia e ghiaia
- Buismann-Sanglerat, correlazione valida per sabbia e sabbia argillosa.
- Farrent (1963) valida per sabbie, talora anche per sabbie con ghiaia (da modifica sperimentale di dati).
- Menzenbach e Malcev valida per sabbia fine, sabbia ghiaiosa e sabbia e ghiaia.

Stato di consistenza

• Classificazione A.G.I. 1977

Peso di Volume Gamma

• Meyerhof ed altri, valida per sabbie, ghiaie, limo, limo sabbioso.

Peso di volume saturo

Terzaghi-Peck 1948-1967

Modulo di poisson

Classificazione A.G.I.

Potenziale di liquefazione (Stress Ratio)

 Seed-Idriss 1978-1981. Tale correlazione è valida solamente per sabbie, ghiaie e limi sabbiosi, rappresenta il rapporto tra lo sforzo dinamico medio τ e la tensione verticale di consolidazione per la valutazione del potenziale di liquefazione delle sabbie e terreni sabbioghiaiosi attraverso grafici degli autori.

Velocità onde di taglio Vs (m/sec)

Tale correlazione è valida solamente per terreni incoerenti sabbiosi e ghiaiosi.

Modulo di deformazione di taglio (G)

- Ohsaki & Iwasaki elaborazione valida per sabbie con fine plastico e sabbie pulite.
- Robertson e Campanella (1983) e Imai & Tonouchi (1982) elaborazione valida soprattutto per sabbie e per tensioni litostatiche comprese tra 0,5 - 4,0 kg/cmq.

Modulo di reazione (Ko)

• Navfac 1971-1982 - elaborazione valida per sabbie, ghiaie, limo, limo sabbioso .

Resistenza alla punta del Penetrometro Statico (Qc)

• Robertson 1983 Oc

Correlazioni geotecniche terreni coesivi

Coesione non drenata

- Benassi & Vannelli- correlazioni scaturite da esperienze ditta costruttrice Penetrometri SUNDA 1983.
- Terzaghi-Peck (1948-1967), correlazione valida per argille sabbiose-siltose NC con Nspt <8, argille limose-siltose mediamente
 plastiche, argille marnose alterate-fessurate.
- Terzaghi-Peck (1948). Cu min-max.
- Sanglerat, da dati Penetr. Statico per terreni coesivi saturi, tale correlazione non è valida per argille sensitive con sensitività > 5, per argille sovraconsolidate fessurate e per i limi a bassa plasticità.
- Sanglerat, (per argille limose-sabbiose poco coerenti), valori validi per resistenze penetrometriche < 10 colpi, per resistenze penetrometriche > 10 l'elaborazione valida è comunque quella delle "argille plastiche" di Sanglerat.
- (U.S.D.M.S.M.) U.S. Design Manual Soil Mechanics Coesione non drenata per argille limose e argille di bassa media ed alta plasticità, (Cu-Nspt-grado di plasticità).
- Schmertmann 1975 Cu (Kg/cmq) (valori medi), valida per argille e limi argillosi con Nc=20 e Qc/Nspt=2.
- Schmertmann 1975 Cu (Kg/cmq) (valori minimi), valida per argille NC .
- Fletcher 1965 (Argilla di Chicago). Coesione non drenata Cu (Kg/cmq), colonna valori validi per argille a medio-bassa plasticità.
- Houston (1960) argilla di media-alta plasticità.
- Shioi-Fukuni 1982, valida per suoli poco coerenti e plastici, argilla di media-alta plasticità.
- Begemann.
- De Beer.

Resistenza alla punta del Penetrometro Statico (Qc)

• Robertson 1983 Qc

Modulo Edometrico-Confinato (Mo)

- Stroud e Butler (1975) per litotipi a media plasticità, valida per litotipi argillosi a media-medio-alta plasticità da esperienze su argille glaciali.
- Stroud e Butler (1975), per litotipi a medio-bassa plasticità (IP< 20), valida per litotipi argillosi a medio-bassa plasticità (IP< 20) da esperienze su argille glaciali .
- Vesic (1970) correlazione valida per argille molli (valori minimi e massimi).
- Trofimenkov (1974), Mitchell e Gardner Modulo Confinato -Mo (Eed) (Kg/cmq)-, valida per litotipi argillosi e limosi-argillosi (rapporto Qc/Nspt=1.5-2.0).
- Buismann- Sanglerat, valida per argille compatte (Nspt <30) medie e molli (Nspt <4) e argille sabbiose (Nspt=6-12).

Modulo Di Young (Ey)

- Schultze-Menzenbach (Min. e Max.), correlazione valida per limi coerenti e limi argillosi con I.P. >15
- D'Appollonia ed altri (1983) correlazione valida per argille sature-argille fessurate.

Stato di consistenza

Classificazione A.G.I. 1977

Peso di Volume

• Meyerhof ed altri, valida per argille, argille sabbiose e limose prevalentemente coerenti.

Peso di volume saturo

Meyerhof ed altri.

PROVA ...P/1

Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata

DPSH TG 63-200 PAGANI 01/03/2014 15,00 mt

Tipo elaborazione Nr. Colpi: Distribuzione normale R.C.

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0,20	1	0,855	8,98	10,51	0,45	0,53
0,40	1	0,851	8,94	10,51	0,45	0,53
0,60	1	0,847	8,17	9,64	0,41	0,48
0,80	5	0,843	40,66	48,22	2,03	2,41
1,00	3	0,840	24,29	28,93	1,21	1,45
1,20	4	0,836	32,26	38,57	1,61	1,93
1,40 1,60	2 3	0,833 0,830	16,06 22,18	19,29 26,73	0,80	0,96 1,34
1,80	14	0,830	96,85	124,75	1,11 4,84	6,24
2,00	16	0,773	110,24	142,57	5,51	7,13
2,20	4	0,820	29,23	35,64	1,46	1,78
2,40	2	0,817	14,56	17,82	0,73	0,89
2,60	1	0,814	6,74	8,28	0,34	0,41
2,80	2	0,811	13,44	16,56	0,67	0,83
3,00	3	0,809	20,09	24,85	1,00	1,24
3,20	1	0,806	6,68	8,28	0,33	0,41
3,40	2	0,803	13,31	16,56	0,67	0,83
3,60	3	0,801	18,59	23,21	0,93	1,16
3,80	3	0,798	18,53	23,21	0,93	1,16
4,00	3	0,796	18,47	23,21	0,92	1,16
4,20	3	0,794	18,42	23,21	0,92	1,16
4,40	1	0,791	6,12	7,74	0,31	0,39
4,60	2	0,789	11,45	14,51	0,57	0,73
4,80 5,00	4	0,787 0,785	22,85	29,03 43,54	1,14 1,71	1,45 2,18
5,00	6 3	0,783	34,18 17,05	43,54 21,77	0,85	1,09
5,40	8	0,783	45,34	58,06	2,27	2,90
5,60	6	0,781	31,95	41,00	1,60	2,05
5,80	3	0,777	15,94	20,50	0,80	1,03
6,00	2	0,775	10,60	13,67	0,53	0,68
6,20	2	0,774	10,58	13,67	0,53	0,68
6,40	1	0,772	5,28	6,83	0,26	0,34
6,60	1	0,770	4,97	6,46	0,25	0,32
6,80	1	0,769	4,96	6,46	0,25	0,32
7,00	1	0,767	4,95	6,46	0,25	0,32
7,20	1	0,766	4,94	6,46	0,25	0,32
7,40	1	0,764	4,93	6,46	0,25	0,32
7,60	1	0,763	4,67	6,12	0,23	0,31
7,80	1	0,761	4,66	6,12	0,23	0,31
8,00 8,20	1	0,760	4,65 4,64	6,12 6,12	0,23 0,23	0,31
8,20 8,40	1	0,759 0,757	4,64	6,12	0,23	0,31 0,31
8,60	1	0,756	4,64	5,82	0,23	0,31
8,80	4	0,755	17,56	23,27	0,88	1,16
9,00	4	0,753	17,53	23,27	0,88	1,16
9,20	4	0,752	17,51	23,27	0,88	1,16
9,40	3	0,751	13,11	17,45		0,87
9,60	6	0,750	24,94	33,25	1,25	1,66
9,80	5	0,749	20,75	27,71	1,04	1,39
10,00	6	0,748	24,86	33,25	1,24	1,66
10,20	11	0,747	45,52	60,97	2,28	3,05
10,40	3	0,746	12,40	16,63	0,62	0,83
10,60	7	0,744	27,58	37,05	1,38	1,85
10,80	10	0,743	39,34	52,92	1,97	2,65
11,00	7	0,742	27,50	37,05	1,38	1,85

11,20	5	0,741	19,62	26,46	0,98	1,32
11,40	1	0,740	3,92	5,29	0,20	0,26
11,60	4	0,739	14,97	20,26	0,75	1,01
11,80	4	0,738	14,95	20,26	0,75	1,01
12,00	7	0,737	26,13	35,45	1,31	1,77
12,20	8	0,736	29,82	40,51	1,49	2,03
12,40	11	0,735	40,95	55,70	2,05	2,79
12,60	7	0,734	24,95	33,98	1,25	1,70
12,80	8	0,733	28,47	38,83	1,42	1,94
13,00	6	0,732	21,32	29,13	1,07	1,46
13,20	6	0,731	21,29	29,13	1,06	1,46
13,40	11	0,730	38,98	53,40	1,95	2,67
13,60	11	0,729	37,38	51,28	1,87	2,56
13,80	13	0,678	41,08	60,60	2,05	3,03
14,00	10	0,727	33,88	46,61	1,69	2,33
14,20	12	0,726	40,59	55,94	2,03	2,80
14,40	13	0,675	40,88	60,60	2,04	3,03
14,60	19	0,673	57,37	85,18	2,87	4,26
14,80	12	0,722	38,86	53,80	1,94	2,69
15,00	19	0,671	57,17	85,18	2,86	4,26

Prof.	NPDM	Rd	Tipo	Clay	Peso unità	Peso unità	Tensione	Coeff. di	Nspt	Descrizion
Strato		(Kg/cm ²)		Fraction	di volume	di volume	efficace	correlaz.		e
(m)				(%)	(t/m^3)	saturo	(Kg/cm ²)	con Nspt		
						(t/m^3)				
1,6	1,68	11,13	Incoerente	0	1,81	1,89	0,14	1,46	2	Terreni
			- coesivo							piroclastici
										a tessitura
										limosa
2,2	6,35	15,52	Incoerente	0	1,7	1,91	0,34	1,47	9	sabbia
										debolment
										e ghiaiosa
										fluviale
8,6	1,76	11,96	Incoerente	0	1,63	1,86	0,91	1,5	3	Terreni
			- coesivo							piroclastici
										a tessitura
										limo-
										sabbiosa
13	5,06	22,27	Incoerente	0	1,66	1,91	1,8	1,53	8	
										debolment
										e ghiaiosa
15	10,66	34,39	Incoerente	0	2,08	2,29	2,37	1,54	16	Terreni
			- coesivo							piroclastici
										a tessitura
										da limosa
										a limo-
										argillosa

STIMA PARAMETRI GEOTECNICI PROVA P/1

TERRENI COESIV I

Coesione non drenata

Descrizione	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm ²)
Strato (1)	2	0.00-1,60	Shioi - Fukui 1982	0,10
Terreni piroclastici a				
tessitura limosa				
Strato (3)	3	2,20-8,60	Shioi - Fukui 1982	0,15
Terreni piroclastici a				
tessitura limo-sabbiosa				
Strato (5)	16	13,00-15,00	Shioi - Fukui 1982	0,80
Terreni piroclastici a				
tessitura da limosa a				
limo-argillosa				

Qc (Resistenza punta Penetrometro Statico)

Descrizione	Nspt	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm ²)
Strato (1)	2	0.00-1,60	Robertson (1983)	4,00
Terreni piroclastici a				
tessitura limosa				
Strato (3)	3	2,20-8,60	Robertson (1983)	6,00
Terreni piroclastici a				
tessitura limo-sabbiosa				
Strato (5)	16	13,00-15,00	Robertson (1983)	32,00
Terreni piroclastici a				
tessitura da limosa a				
limo-argillosa				

Modulo Edometrico

Descrizione	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm ²)
Strato (1)	2	0.00-1,60	Stroud e Butler (1975)	9,18
Terreni piroclastici a				
tessitura limosa				
Strato (3)	3	2,20-8,60	Stroud e Butler (1975)	13,76
Terreni piroclastici a				
tessitura limo-sabbiosa				
Strato (5)	16	13,00-15,00	Stroud e Butler (1975)	73,41
Terreni piroclastici a				
tessitura da limosa a				
limo-argillosa				

Modulo di Young

Modulo di Toulig				
Descrizione	Nspt	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm ²)
Strato (1)	2	0.00-1,60	Apollonia	20,00
Terreni piroclastici a				
tessitura limosa				
Strato (3)	3	2,20-8,60	Apollonia	30,00
Terreni piroclastici a				
tessitura limo-sabbiosa				
Strato (5)	16	13,00-15,00	Apollonia	160,00
Terreni piroclastici a				
tessitura da limosa a				
limo-argillosa				

Classificazione AGI

Descrizione	Nspt	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato (1)	2	0.00-1,60	A.G.I. (1977)	PRIVO DI
Terreni piroclastici a				CONSISTENZA
tessitura limosa				
Strato (3)	3	2,20-8,60	A.G.I. (1977)	POCO
Terreni piroclastici a				CONSISTENTE
tessitura limo-sabbiosa				
Strato (5)	16	13,00-15,00	A.G.I. (1977)	MOLTO
Terreni piroclastici a				CONSISTENTE
tessitura da limosa a				
limo-argillosa				

Peso unità di volume

Descrizione	Nspt	Prof. Strato	Correlazione	Peso unità di volume
	•	(m)		(t/m^3)
Strato (1)	2	0.00-1,60	Meyerhof ed altri	1,56
Terreni piroclastici a				
tessitura limosa				
Strato (3)	3	2,20-8,60	Meyerhof ed altri	1,63
Terreni piroclastici a				

tessitura limo-sabbiosa				
Strato (5)	16	13,00-15,00	Meyerhof ed altri	2,08
Terreni piroclastici a				
tessitura da limosa a				
limo-argillosa				

Peso unità di volume saturo

Descrizione	Nspt	Prof. Strato (m)	Correlazione	Peso unità di volume saturo
		(111)		(t/m^3)
Strate (1)	2	0.00.1.60	Maryanh of ad altri	` /
Strato (1)	2	0.00-1,60	Meyerhof ed altri	1,85
Terreni piroclastici a				
tessitura limosa				
Strato (3)	3	2,20-8,60	Meyerhof ed altri	1,86
Terreni piroclastici a				
tessitura limo-sabbiosa				
Strato (5)	16	13,00-15,00	Meyerhof ed altri	2,29
Terreni piroclastici a				
tessitura da limosa a				
limo-argillosa				

Velocità onde di taglio

Descrizione Descrizione	Nspt	Prof. Strato	Correlazione	Velocità onde di taglio
	1	(m)		(m/s)
Strato (1)	2	0.00-1,60	Ohta & Goto (1978)	73,87
Terreni piroclastici a			Argille limose e argille	
tessitura limosa			di bassa plasticità	
Strato (3)	3	2,20-8,60	Ohta & Goto (1978)	114,56
Terreni piroclastici a			Argille limose e argille	
tessitura limo-sabbiosa			di bassa plasticità	
Strato (5)	16	13,00-15,00	Ohta & Goto (1978)	183,92
Terreni piroclastici a			Argille limose e argille	
tessitura da limosa a			di bassa plasticità	
limo-argillosa				

TERRENI INCOERENT I

Densità relativa

Descrizione	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Densità relativa
		(m)	presenza falda		(%)
Strato (1)	2	0.00-1,60	2	Skempton 1986	12,38
Terreni piroclastici					
a tessitura limosa					
Strato (2)	9	1,60-2,20	9	Skempton 1986	30,74
sabbia debolmente					
ghiaiosa fluviale					
Strato (3)	3	2,20-8,60	3	Skempton 1986	15,3
Terreni piroclastici					
a tessitura limo-					
sabbiosa					
Strato (4)	8	8,60-13,00	8	Skempton 1986	28,4
sabbia debolmente					
ghiaiosa					
Strato (5)	16	13,00-15,00	16	Skempton 1986	44,79
Terreni piroclastici					
a tessitura da					
limosa a limo-					
argillosa					

Angolo di resistenza al taglio

Descrizione	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Angolo d'attrito
		(m)	presenza falda		(°)
Strato (1)	2	0.00-1,60	2	Peck-Hanson-	27,57
Terreni piroclastici				Thornburn-	

a tessitura limosa				Meyerhof 1956	
Strato (2)	9	1,60-2,20	9	Peck-Hanson-	29,57
sabbia debolmente				Thornburn-	
ghiaiosa fluviale				Meyerhof 1956	
Strato (3)	3	2,20-8,60	3	Peck-Hanson-	27,86
Terreni piroclastici				Thornburn-	
a tessitura limo-				Meyerhof 1956	
sabbiosa					
Strato (4)	8	8,60-13,00	8	Peck-Hanson-	29,29
sabbia debolmente				Thornburn-	
ghiaiosa				Meyerhof 1956	
Strato (5)	16	13,00-15,00	16	Peck-Hanson-	31,57
Terreni piroclastici				Thornburn-	
a tessitura da				Meyerhof 1956	
limosa a limo-					
argillosa					

Modulo di Young

Modulo di Young					
Descrizione	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo di Young
		(m)	presenza falda		(Kg/cm ²)
Strato (1)	2	0.00-1,60	2	Schmertmann	16,00
Terreni piroclastici				(1978) (Sabbie)	
a tessitura limosa					
Strato (2)	9	1,60-2,20	9	Schmertmann	72,00
sabbia debolmente				(1978) (Sabbie)	
ghiaiosa fluviale					
Strato (3)	3	2,20-8,60	3	Schmertmann	24,00
Terreni piroclastici				(1978) (Sabbie)	
a tessitura limo-					
sabbiosa					
Strato (4)	8	8,60-13,00	8	Schmertmann	64,00
sabbia debolmente				(1978) (Sabbie)	
ghiaiosa					
Strato (5)	16	13,00-15,00	16	Schmertmann	128,00
Terreni piroclastici				(1978) (Sabbie)	
a tessitura da					
limosa a limo-					
argillosa					

Modulo Edometrico

Descrizione	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Modulo Edometrico (Kg/cm²)
Strato (1) Terreni piroclastici a tessitura limosa	2	0.00-1,60	2	Begemann 1974 (Ghiaia con sabbia)	31,57
Strato (2) sabbia debolmente ghiaiosa fluviale	9	1,60-2,20	9	Begemann 1974 (Ghiaia con sabbia)	45,95
Strato (3) Terreni piroclastici a tessitura limo- sabbiosa	3	2,20-8,60	3	Begemann 1974 (Ghiaia con sabbia)	33,63
Strato (4) sabbia debolmente ghiaiosa	8	8,60-13,00	8	Begemann 1974 (Ghiaia con sabbia)	43,90
Strato (5) Terreni piroclastici a tessitura da limosa a limo- argillosa	16	13,00-15,00	16	Begemann 1974 (Ghiaia con sabbia)	60,33

Classificazione AGI

Descrizione	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Classificazione AGI
Strato (1)	2	0.00-1,60	presenza iaida	Classificazione	SCIOLTO
Terreni piroclastici		0.00 1,00	2	A.G.I	BCIOLIO
a tessitura limosa				A.G.1	
Strato (2)	9	1,60-2,20	9	Classificazione	POCO
` /	9	1,00-2,20	9		
sabbia debolmente				A.G.I	ADDENSATO
ghiaiosa fluviale					
Strato (3)	3	2,20-8,60	3	Classificazione	SCIOLTO
Terreni piroclastici				A.G.I	
a tessitura limo-					
sabbiosa					
Strato (4)	8	8,60-13,00	8	Classificazione	POCO
sabbia debolmente		, ,		A.G.I	ADDENSATO
ghiaiosa					
Strato (5)	16	13,00-15,00	16	Classificazione	MODERATAME
Terreni piroclastici				A.G.I	NTE
a tessitura da					ADDENSATO
limosa a limo-					
argillosa					

Peso unità di volume

Descrizione	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Gamma (t/m³)
Strato (1)	2	0.00-1,60	2	Meyerhof ed altri	1,40
Terreni piroclastici					
a tessitura limosa					
Strato (2)	9	1,60-2,20	9	Meyerhof ed altri	1,70
sabbia debolmente					
ghiaiosa fluviale					
Strato (3)	3	2,20-8,60	3	Meyerhof ed altri	1,45
Terreni piroclastici					
a tessitura limo-					
sabbiosa					
Strato (4)	8	8,60-13,00	8	Meyerhof ed altri	1,66
sabbia debolmente					
ghiaiosa					
Strato (5)	16	13,00-15,00	16	Meyerhof ed altri	1,91
Terreni piroclastici					
a tessitura da					
limosa a limo-					
argillosa					

Peso unità di volume saturo

Descrizione	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma Saturo
		(m)	presenza falda		(t/m^3)
Strato (1)	2	0.00-1,60	2	Terzaghi-Peck	1,87
Terreni piroclastici				1948-1967	
a tessitura limosa					
Strato (2)	9	1,60-2,20	9	Terzaghi-Peck	1,91
sabbia debolmente				1948-1967	
ghiaiosa fluviale					
Strato (3)	3	2,20-8,60	3	Terzaghi-Peck	1,87
Terreni piroclastici				1948-1967	
a tessitura limo-					
sabbiosa					
Strato (4)	8	8,60-13,00	8	Terzaghi-Peck	1,91
sabbia debolmente				1948-1967	
ghiaiosa					
Strato (5)	16	13,00-15,00	16	Terzaghi-Peck	1,96
Terreni piroclastici				1948-1967	
a tessitura da					
limosa a limo-					

argillosa

Modulo di Poisson

Descrizione Descrizione	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Poisson
Beservatione	•	(m)	presenza falda		
Strato (1)	2	0.00-1,60	2	(A.G.I.)	0,35
Terreni piroclastici					
a tessitura limosa					
Strato (2)	9	1,60-2,20	9	(A.G.I.)	0,34
sabbia debolmente					
ghiaiosa fluviale					
Strato (3)	3	2,20-8,60	3	(A.G.I.)	0,35
Terreni piroclastici					
a tessitura limo-					
sabbiosa					
Strato (4)	8	8,60-13,00	8	(A.G.I.)	0,34
sabbia debolmente					
ghiaiosa					
Strato (5)	16	13,00-15,00	16	(A.G.I.)	0,32
Terreni piroclastici					
a tessitura da					
limosa a limo-					
argillosa					

Modulo di deformazione a taglio dinamico

Descrizione	Nspt	Prof. Strato	Nspt corretto per	Correlazione	G
		(m)	presenza falda		(Kg/cm ²)
Strato (1)	2	0.00-1,60	2	Ohsaki (Sabbie	124,70
Terreni piroclastici				pulite)	
a tessitura limosa					
Strato (2)	9	1,60-2,20	9	Ohsaki (Sabbie	512,74
sabbia debolmente				pulite)	
ghiaiosa fluviale					
Strato (3)	3	2,20-8,60	3	Ohsaki (Sabbie	182,56
Terreni piroclastici				pulite)	
a tessitura limo-					
sabbiosa					
Strato (4)	8	8,60-13,00	8	Ohsaki (Sabbie	459,01
sabbia debolmente				pulite)	
ghiaiosa					
Strato (5)	16	13,00-15,00	16	Ohsaki (Sabbie	880,62
Terreni piroclastici				pulite)	
a tessitura da					
limosa a limo-					
argillosa					

Velocità onde di taglio

Descrizione	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Velocità onde di
		(m)	presenza falda		taglio
					(m/s)
Strato (1)	2	0.00-1,60	2	Ohta & Goto	73,87
Terreni piroclastici				(1978) Limi	
a tessitura limosa					
Strato (2)	9	1,60-2,20	9	Ohta & Goto	113,24
sabbia debolmente				(1978) Limi	
ghiaiosa fluviale					
Strato (3)	3	2,20-8,60	3	Ohta & Goto	114,56
Terreni piroclastici				(1978) Limi	
a tessitura limo-					
sabbiosa					
Strato (4)	8	8,60-13,00	8	Ohta & Goto	155,17
sabbia debolmente				(1978) Limi	
ghiaiosa					

Strato (5)	16	13,00-15,00	16	Ohta & Goto	183,92
Terreni piroclastici				(1978) Limi	
a tessitura da					
limosa a limo-					
argillosa					

Coefficiente spinta a Riposo K0=SigmaH/P0

Descrizione	Nspt	Prof. Strato	Nspt corretto per	Correlazione	K0
		(m)	presenza falda		
Strato (1)	2	0.00-1,60	2	Navfac 1971-1982	0,27
Terreni piroclastici					
a tessitura limosa					
Strato (2)	9	1,60-2,20	9	Navfac 1971-1982	1,89
sabbia debolmente					
ghiaiosa fluviale					
Strato (3)	3	2,20-8,60	3	Navfac 1971-1982	0,51
Terreni piroclastici					
a tessitura limo-					
sabbiosa					
Strato (4)	8	8,60-13,00	8	Navfac 1971-1982	1,67
sabbia debolmente					
ghiaiosa					
Strato (5)	16	13,00-15,00	16	Navfac 1971-1982	3,32
Terreni piroclastici					
a tessitura da					
limosa a limo-					
argillosa					

Qc (Resistenza punta Penetrometro Statico)

Descrizione	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Qc (V a/am²)
		(m)	presenza falda		(Kg/cm ²)
Strato (1)	2	0.00-1,60	2	Robertson 1983	4,00
Terreni piroclastici					
a tessitura limosa					
Strato (2)	9	1,60-2,20	9	Robertson 1983	18,00
sabbia debolmente					
ghiaiosa fluviale					
Strato (3)	3	2,20-8,60	3	Robertson 1983	6,00
Terreni piroclastici					
a tessitura limo-					
sabbiosa					
Strato (4)	8	8,60-13,00	8	Robertson 1983	16,00
sabbia debolmente					
ghiaiosa					
Strato (5)	16	13,00-15,00	16	Robertson 1983	32,00
Terreni piroclastici					
a tessitura da					
limosa a limo-					
argillosa					

PROVA ... P/2

Strumento utilizzato... DPSH TG 63-200 PAGANI Prova eseguita in data 01/03/2014 Profondità prova 15,00 mt Falda non rilevata

Tipo elaborazione Nr. Colpi: Distribuzione normale R.C.

Profondità (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres.	Pres.
		riduzione sonda	ridotta	(Kg/cm ²)	ammissibile	ammissibile
		Chi	(Kg/cm ²)		con riduzione	Herminier -

					Herminier - Olandesi	Olandesi (Kg/cm²)
					(Kg/cm ²)	
0,20	1	0,855	8,98	10,51	0,45	0,53
0,40	1	0,851	8,94	10,51	0,45	0,53
0,60 0,80	1	0,847 0,843	8,17 8,13	9,64	0,41	0,48
1,00	1	0,843	8,13	9,64 9,64	0,41 0,40	0,48 0,48
1,00	3	0,840	24,19	28,93	1,21	1,45
1,40	7	0,833	56,22	67,50	2,81	3,38
1,60	4	0,830	29,57	35,64	1,48	1,78
1,80	1	0,826	7,36	8,91	0,37	0,45
2,00	1	0,823	7,34	8,91	0,37	0,45
2,20	1	0,820	7,31	8,91	0,37	0,45
2,40	1	0,817	7,28	8,91	0,36	0,45
2,60	1	0,814	6,74	8,28	0,34	0,41
2,80	1	0,811	6,72	8,28	0,34	0,41
3,00	1	0,809	6,70	8,28	0,33	0,41
3,20	1	0,806	6,68	8,28	0,33	0,41
3,40	2	0,803	13,31	16,56	0,67	0,83
3,60	2	0,801	12,39	15,47	0,62	0,77
3,80	2	0,798	12,35	15,47	0,62	0,77
4,00 4,20	3	0,796	18,47	23,21	0,92	1,16
4,20	2 2	0,794 0,791	12,28 12,24	15,47 15,47	0,61 0,61	0,77 0,77
4,40	1	0,791	5,73	7,26	0,01	0,77
4,80	2	0,789	11,42	14,51	0,29	0,30
5,00	4	0,785	22,79	29,03	1,14	1,45
5,20	6	0,783	34,09	43,54	1,70	2,18
5,40	6	0,781	34,01	43,54	1,70	2,18
5,60	2	0,779	10,65	13,67	0,53	0,68
5,80	1	0,777	5,31	6,83	0,27	0,34
6,00	1	0,775	5,30	6,83	0,26	0,34
6,20	1	0,774	5,29	6,83	0,26	0,34
6,40	1	0,772	5,28	6,83	0,26	0,34
6,60	l	0,770	4,97	6,46	0,25	0,32
6,80	1	0,769	4,96	6,46	0,25	0,32
7,00	1	0,767 0,766	4,95	6,46	0,25 0,25	0,32 0,32
7,20 7,40	1 1	0,766	4,94 4,93	6,46 6,46	0,25	0,32
7,40	2	0,763	9,34	12,24	0,23	0,32
7,80	1	0,761	4,66	6,12	0,47	0,31
8,00	1	0,760	4,65	6,12	0,23	0,31
8,20	1	0,759	4,64	6,12	0,23	0,31
8,40	1	0,757	4,64	6,12	0,23	0,31
8,60	1	0,756	4,40	5,82	0,22	0,29
8,80	4	0,755	17,56	23,27	0,88	1,16
9,00	5	0,753	21,92	29,09	1,10	1,45
9,20	4	0,752	17,51	23,27	0,88	1,16
9,40	5	0,751	21,85	29,09	1,09	1,45
9,60	6	0,750	24,94	33,25	1,25	1,66
9,80	5	0,749	20,75	27,71	1,04	1,39
10,00	6 7	0,748	24,86	33,25	1,24	1,66
10,20 10,40	12	0,747 0,746	28,97 49,58	38,80 66,51	1,45 2,48	1,94 3,33
10,40	12	0,746	49,38	58,22	2,48	2,91
10,80	7	0,743	27,54	37,05	1,38	1,85
11,00	6	0,743	23,57	31,75	1,18	1,59
11,20	5	0,741	19,62	26,46	0,98	1,32
11,40	4	0,740	15,67	21,17	0,78	1,06
11,60	7	0,739	26,20	35,45	1,31	1,77
11,80	6	0,738	22,43	30,38	1,12	1,52
12,00	7	0,737	26,13	35,45	1,31	1,77

12,20	6	0,736	22,37	30,38	1,12	1,52
12,40	10	0,735	37,23	50,64	1,86	2,53
12,60	8	0,734	28,51	38,83	1,43	1,94
12,80	9	0,733	32,03	43,69	1,60	2,18
13,00	7	0,732	24,88	33,98	1,24	1,70
13,20	8	0,731	28,39	38,83	1,42	1,94
13,40	12	0,730	42,52	58,25	2,13	2,91
13,60	11	0,729	37,38	51,28	1,87	2,56
13,80	14	0,678	44,24	65,26	2,21	3,26
14,00	11	0,727	37,27	51,28	1,86	2,56
14,20	13	0,676	40,95	60,60	2,05	3,03
14,40	14	0,675	44,02	65,26	2,20	3,26
14,60	18	0,673	54,35	80,70	2,72	4,03
14,80	11	0,722	35,62	49,32	1,78	2,47
15,00	18	0,671	54,16	80,70	2,71	4,03

Prof. Strato (m)	NPDM	Rd (Kg/cm²)	Tipo	Clay Fraction (%)	Peso unità di volume (t/m³)	Peso unità di volume saturo (t/m³)	Tensione efficace (Kg/cm²)	Coeff. di correlaz. con Nspt	Nspt	Descrizio ne
1	1	3,27	Incoerent e - coesivo	0	1,63	1,86	0,08	1,46	1	Terreni piroclasti ci a tessitura limosa
1,6	3,05	6,5	Incoerent e	0	1,49	1,88	0,21	1,47	4	sabbia debolmen te ghiaiosa
8,6	1,31	8,93	Incoerent e - coesivo	0	1,56	1,85	0,8	1,5	2	Terreni piroclasti ci a tessitura limo- sabbiosa
13	5,93	25,07	Incoerent e	0	1,7	1,91	1,72	1,53	9	sabbia debolmen te ghiaiosa
15	11,44	35,57	Incoerent e - coesivo	0	2,09	2,3	2,3	1,54	18	

STIMA PARAMETRI GEOTECNICI PROVA P/2

TERRENI COESIV I

Coesione non drenata

Descrizione	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm ²)
Strato (1)	1	0.00-1,00	Shioi - Fukui 1982	0,05
Terreni piroclastici a				
tessitura limosa				
Strato (3)	2	1,60-8,60	Shioi - Fukui 1982	0,10
Terreni piroclastici a				
tessitura limo-sabbiosa				
Strato (5)	18	13,00-15,00	Shioi - Fukui 1982	0,90

Terreni piroclastici a		
tessitura limosa a		
limo-argillosa		

Qc (Resistenza punta Penetrometro Statico)

Descrizione	Nspt	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm ²)
Strato (1)	1	0.00-1,00	Robertson (1983)	2,00
Terreni piroclastici a				
tessitura limosa				
Strato (3)	2	1,60-8,60	Robertson (1983)	4,00
Terreni piroclastici a				
tessitura limo-sabbiosa				
Strato (5)	18	13,00-15,00	Robertson (1983)	36,00
Terreni piroclastici a				
tessitura limosa a				
limo-argillosa				

Modulo Edometrico

Descrizione	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm ²)
Strato (1)	1	0.00-1,00	Stroud e Butler (1975)	4,59
Terreni piroclastici a				
tessitura limosa				
Strato (3)	2	1,60-8,60	Stroud e Butler (1975)	9,18
Terreni piroclastici a				
tessitura limo-sabbiosa				
Strato (5)	18	13,00-15,00	Stroud e Butler (1975)	82,58
Terreni piroclastici a				
tessitura limosa a				
limo-argillosa				

Modulo di Young

Descrizione	Nspt	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm ²)
Strato (1)	1	0.00-1,00	Apollonia	10,00
Terreni piroclastici a				
tessitura limosa				
Strato (3)	2	1,60-8,60	Apollonia	20,00
Terreni piroclastici a				
tessitura limo-sabbiosa				
Strato (5)	18	13,00-15,00	Apollonia	180,00
Terreni piroclastici a			_	
tessitura limosa a				
limo-argillosa				

Classificazione AGI

Descrizione	Nspt	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato (1)	1	0.00-1,00	A.G.I. (1977)	PRIVO DI
Terreni piroclastici a				CONSISTENZA
tessitura limosa				
Strato (3)	2	1,60-8,60	A.G.I. (1977)	PRIVO DI
Terreni piroclastici a				CONSISTENZA
tessitura limo-sabbiosa				
Strato (5)	18	13,00-15,00	A.G.I. (1977)	MOLTO
Terreni piroclastici a				CONSISTENTE
tessitura limosa a				
limo-argillosa				

Peso unità di volume

Descrizione	Nspt	Prof. Strato	Correlazione	Peso unità di volume	
		(m)		(t/m^3)	

Strato (1)	1	0.00-1,00	Meyerhof ed altri	1,48
Terreni piroclastici a				
tessitura limosa				
Strato (3)	2	1,60-8,60	Meyerhof ed altri	1,56
Terreni piroclastici a				
tessitura limo-sabbiosa				
Strato (5)	18	13,00-15,00	Meyerhof ed altri	2,09
Terreni piroclastici a				
tessitura limosa a				
limo-argillosa				

Peso unità di volume saturo

Descrizione	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		saturo
				(t/m^3)
Strato (1)	1	0.00-1,00	Meyerhof ed altri	1,84
Terreni piroclastici a				
tessitura limosa				
Strato (3)	2	1,60-8,60	Meyerhof ed altri	1,85
Terreni piroclastici a				
tessitura limo-sabbiosa				
Strato (5)	18	13,00-15,00	Meyerhof ed altri	2,30
Terreni piroclastici a				
tessitura limosa a				
limo-argillosa				

Velocità onde di taglio

Descrizione Descrizione	Nspt	Prof. Strato	Correlazione	Velocità onde di taglio
	•	(m)		(m/s)
Strato (1)	1	0.00-1,00	Ohta & Goto (1978)	59,84
Terreni piroclastici a			Argille limose e argille	
tessitura limosa			di bassa plasticità	
Strato (3)	2	1,60-8,60	Ohta & Goto (1978)	105,62
Terreni piroclastici a			Argille limose e argille	
tessitura limo-sabbiosa			di bassa plasticità	
Strato (5)	18	13,00-15,00	Ohta & Goto (1978)	187,71
Terreni piroclastici a			Argille limose e argille	
tessitura limosa a			di bassa plasticità	
limo-argillosa				

TERRENI INCOERENT I

Densità relativa

Descrizione Descrizione	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Densità relativa
	Торс	(m)	presenza falda		(%)
Strato (1)	1	0.00-1,00	1	Skempton 1986	9,36
Terreni piroclastici					
a tessitura limosa					
Strato (2)	4	1,00-1,60	4	Skempton 1986	18,12
sabbia debolmente					
ghiaiosa					
Strato (3)	2	1,60-8,60	2	Skempton 1986	12,38
Terreni piroclastici					
a tessitura limo-					
sabbiosa					
Strato (4)	9	8,60-13,00	9	Skempton 1986	30,74
sabbia debolmente					
ghiaiosa					
Strato (5)	18	13,00-15,00	18	Skempton 1986	48,14
Terreni piroclastici					
a tessitura limosa					
a limo-argillosa					

Angolo di resistenza al taglio

Descrizione	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Angolo d'attrito
		(m)	presenza falda		(°)
Strato (1)	1	0.00-1,00	1	Peck-Hanson-	27,29
Terreni piroclastici				Thornburn-	
a tessitura limosa				Meyerhof 1956	
Strato (2)	4	1,00-1,60	4	Peck-Hanson-	28,14
sabbia debolmente				Thornburn-	
ghiaiosa				Meyerhof 1956	
Strato (3)	2	1,60-8,60	2	Peck-Hanson-	27,57
Terreni piroclastici				Thornburn-	
a tessitura limo-				Meyerhof 1956	
sabbiosa					
Strato (4)	9	8,60-13,00	9	Peck-Hanson-	29,57
sabbia debolmente				Thornburn-	
ghiaiosa				Meyerhof 1956	
Strato (5)	18	13,00-15,00	18	Peck-Hanson-	32,14
Terreni piroclastici				Thornburn-	
a tessitura limosa				Meyerhof 1956	
a limo-argillosa				-	

Modulo di Young

Descrizione	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo di Young
Descrizione	rvspt	, , ,		Correlazione	U
		(m)	presenza falda		(Kg/cm ²)
Strato (1)	1	0.00-1,00	1	Schmertmann	8,00
Terreni piroclastici				(1978) (Sabbie)	
a tessitura limosa					
Strato (2)	4	1,00-1,60	4	Schmertmann	32,00
sabbia debolmente				(1978) (Sabbie)	
ghiaiosa					
Strato (3)	2	1,60-8,60	2	Schmertmann	16,00
Terreni piroclastici				(1978) (Sabbie)	
a tessitura limo-					
sabbiosa					
Strato (4)	9	8,60-13,00	9	Schmertmann	72,00
sabbia debolmente				(1978) (Sabbie)	
ghiaiosa					
Strato (5)	18	13,00-15,00	18	Schmertmann	144,00
Terreni piroclastici				(1978) (Sabbie)	
a tessitura limosa				, , , , ,	
a limo-argillosa					

Modulo Edometrico

Descrizione	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Modulo Edometrico (Kg/cm²)
Strato (1)	1	0.00-1,00	1	Begemann 1974	29,52
Terreni piroclastici				(Ghiaia con	
a tessitura limosa				sabbia)	
Strato (2)	4	1,00-1,60	4	Begemann 1974	35,68
sabbia debolmente				(Ghiaia con	
ghiaiosa				sabbia)	
Strato (3)	2	1,60-8,60	2	Begemann 1974	31,57
Terreni piroclastici				(Ghiaia con	
a tessitura limo-				sabbia)	
sabbiosa					
Strato (4)	9	8,60-13,00	9	Begemann 1974	45,95
sabbia debolmente				(Ghiaia con	
ghiaiosa				sabbia)	
Strato (5)	18	13,00-15,00	18	Begemann 1974	64,44
Terreni piroclastici				(Ghiaia con	
a tessitura limosa				sabbia)	
a limo-argillosa				ĺ	

Classificazione AGI

Descrizione	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Classificazione AGI
Strato (1)	1	0.00-1,00	1	Classificazione	SCIOLTO
Terreni piroclastici		,		A.G.I	
a tessitura limosa					
Strato (2)	4	1,00-1,60	4	Classificazione	SCIOLTO
sabbia debolmente				A.G.I	
ghiaiosa					
Strato (3)	2	1,60-8,60	2	Classificazione	SCIOLTO
Terreni piroclastici				A.G.I	
a tessitura limo-					
sabbiosa					
Strato (4)	9	8,60-13,00	9	Classificazione	POCO
sabbia debolmente				A.G.I	ADDENSATO
ghiaiosa					
Strato (5)	18	13,00-15,00	18	Classificazione	MODERATAME
Terreni piroclastici				A.G.I	NTE
a tessitura limosa					ADDENSATO
a limo-argillosa					

Peso unità di volume

Descrizione	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma
		(m)	presenza falda		(t/m^3)
Strato (1)	1	0.00-1,00	1	Meyerhof ed altri	1,35
Terreni piroclastici					
a tessitura limosa					
Strato (2)	4	1,00-1,60	4	Meyerhof ed altri	1,49
sabbia debolmente					
ghiaiosa					
Strato (3)	2	1,60-8,60	2	Meyerhof ed altri	1,40
Terreni piroclastici					
a tessitura limo-					
sabbiosa					
Strato (4)	9	8,60-13,00	9	Meyerhof ed altri	1,70
sabbia debolmente					
ghiaiosa					
Strato (5)	18	13,00-15,00	18	Meyerhof ed altri	1,95
Terreni piroclastici					
a tessitura limosa					
a limo-argillosa					

Peso unità di volume saturo

Descrizione	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Gamma Saturo (t/m³)
Strato (1)	1	0.00-1,00	1	Terzaghi-Peck	1,86
Terreni piroclastici				1948-1967	
a tessitura limosa					
Strato (2)	4	1,00-1,60	4	Terzaghi-Peck	1,88
sabbia debolmente				1948-1967	
ghiaiosa					
Strato (3)	2	1,60-8,60	2	Terzaghi-Peck	1,87
Terreni piroclastici				1948-1967	
a tessitura limo-					
sabbiosa					
Strato (4)	9	8,60-13,00	9	Terzaghi-Peck	1,91
sabbia debolmente				1948-1967	
ghiaiosa					
Strato (5)	18	13,00-15,00	18	Terzaghi-Peck	1,97
Terreni piroclastici				1948-1967	
a tessitura limosa					
a limo-argillosa					

Modulo di Poisson

Descrizione	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson
Strato (1)	1	0.00-1,00	1	(A.G.I.)	0,35
Terreni piroclastici					
a tessitura limosa					
Strato (2)	4	1,00-1,60	4	(A.G.I.)	0,35
sabbia debolmente					
ghiaiosa					
Strato (3)	2	1,60-8,60	2	(A.G.I.)	0,35
Terreni piroclastici					
a tessitura limo-					
sabbiosa					
Strato (4)	9	8,60-13,00	9	(A.G.I.)	0,34
sabbia debolmente					
ghiaiosa					
Strato (5)	18	13,00-15,00	18	(A.G.I.)	0,32
Terreni piroclastici					
a tessitura limosa					
a limo-argillosa					

Modulo di deformazione a taglio dinamico

Descrizione	Nspt	Prof. Strato	Nspt corretto per	Correlazione	G
		(m)	presenza falda		(Kg/cm ²)
Strato (1)	1	0.00-1,00	1	Ohsaki (Sabbie	65,00
Terreni piroclastici				pulite)	
a tessitura limosa					
Strato (2)	4	1,00-1,60	4	Ohsaki (Sabbie	239,25
sabbia debolmente				pulite)	
ghiaiosa					
Strato (3)	2	1,60-8,60	2	Ohsaki (Sabbie	124,70
Terreni piroclastici				pulite)	
a tessitura limo-					
sabbiosa					
Strato (4)	9	8,60-13,00	9	Ohsaki (Sabbie	512,74
sabbia debolmente				pulite)	
ghiaiosa					
Strato (5)	18	13,00-15,00	18	Ohsaki (Sabbie	983,72
Terreni piroclastici				pulite)	
a tessitura limosa					
a limo-argillosa					

Velocità onde di taglio

Descrizione	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Velocità onde di
		(m)	presenza falda		taglio
					(m/s)
Strato (1)	1	0.00-1,00	1	Ohta & Goto	59,84
Terreni piroclastici				(1978) Limi	
a tessitura limosa					
Strato (2)	4	1,00-1,60	4	Ohta & Goto	91,47
sabbia debolmente				(1978) Limi	
ghiaiosa					
Strato (3)	2	1,60-8,60	2	Ohta & Goto	105,62
Terreni piroclastici				(1978) Limi	
a tessitura limo-					
sabbiosa					
Strato (4)	9	8,60-13,00	9	Ohta & Goto	158,36
sabbia debolmente				(1978) Limi	
ghiaiosa					
Strato (5)	18	13,00-15,00	18	Ohta & Goto	187,71
Terreni piroclastici				(1978) Limi	
a tessitura limosa					
a limo-argillosa					

Coefficiente spinta a Riposo K0=SigmaH/P0

Descrizione	Nspt	Prof. Strato	Nspt corretto per	Correlazione	K0
		(m)	presenza falda		
Strato (1)	1	0.00-1,00	1	Navfac 1971-1982	0,02
Terreni piroclastici					
a tessitura limosa					
Strato (2)	4	1,00-1,60	4	Navfac 1971-1982	0,75
sabbia debolmente					
ghiaiosa					
Strato (3)	2	1,60-8,60	2	Navfac 1971-1982	0,27
Terreni piroclastici					
a tessitura limo-					
sabbiosa					
Strato (4)	9	8,60-13,00	9	Navfac 1971-1982	1,89
sabbia debolmente					
ghiaiosa					
Strato (5)	18	13,00-15,00	18	Navfac 1971-1982	3,69
Terreni piroclastici					
a tessitura limosa					
a limo-argillosa					

Oc (Resistenza punta Penetrometro Statico)

Descrizione Descrizione	Nspt Nspt	Prof. Strato	Nspt corretto per	Correlazione	Qc
Descrizione	търі	(m)	presenza falda	Correlazione	(Kg/cm ²)
- (1)		()	presenza iaida	- 1	· • /
Strato (1)	1	0.00-1,00	1	Robertson 1983	2,00
Terreni piroclastici					
a tessitura limosa					
Strato (2)	4	1,00-1,60	4	Robertson 1983	8,00
sabbia debolmente					
ghiaiosa					
Strato (3)	2	1,60-8,60	2	Robertson 1983	4,00
Terreni piroclastici					
a tessitura limo-					
sabbiosa					
Strato (4)	9	8,60-13,00	9	Robertson 1983	18,00
sabbia debolmente					
ghiaiosa					
Strato (5)	18	13,00-15,00	18	Robertson 1983	36,00
Terreni piroclastici					ŕ
a tessitura limosa					
a limo-argillosa					

Indice

1.PROVAP/1	9
1.1.Coesione non drenata	10
1.2.Qc (Resistenza punta Penetrometro Statico)	11
1.3.Modulo Edometrico	11
1.4.Modulo di Young	11
1.5.Classificazione AGI	11
1.6.Peso unità di volume	12
1.7.Peso unità di volume saturo	12
1.8. Velocità onde di taglio	12
1.9.Densità relativa	12
1.10.Angolo di resistenza al taglio	13
1.11.Modulo di Young	13
1.12.Modulo Edometrico	13
1.13.Classificazione AGI	14
1.14.Peso unità di volume	14
1.15.Peso unità di volume saturo	14
1.16.Modulo di Poisson	15
1.17.Modulo di deformazione a taglio dinamico	15
1.18. Velocità onde di taglio	16
1.19.Coefficiente spinta a Riposo K0=SigmaH/P0	16
1.20.Qc (Resistenza punta Penetrometro Statico)	16
2.PROVA P/2	17
2.1.Coesione non drenata	19
2.2.Qc (Resistenza punta Penetrometro Statico)	19
2.3.Modulo Edometrico	19
2.4.Modulo di Young	19
2.5.Classificazione AGI	20
2.6.Peso unità di volume	20
2.7.Peso unità di volume saturo	20
2.8. Velocità onde di taglio	20
2.9.Densità relativa	21
2.10.Angolo di resistenza al taglio	21
2.11.Modulo di Young	21
2.12.Modulo Edometrico	22
2.13.Classificazione AGI	22
2.14.Peso unità di volume	22
2.15.Peso unità di volume saturo	23
2.16.Modulo di Poisson	23
2.17.Modulo di deformazione a taglio dinamico	23
2.18. Velocità onde di taglio	24
2.19.Coefficiente spinta a Riposo K0=SigmaH/P0	24
2.20.Qc (Resistenza punta Penetrometro Statico)	24
Indice	26